Abstract
The INDSCAL individual differences scaling model is extended by assuming dimensions specific to each stimulus or other object, as well as dimensions common to all stimuli or objects. An “alternating maximum likelihood” procedure is used to seek maximum likelihood estimates of all parameters of this EXSCAL (Extended INDSCAL) model, including parameters of monotone splines assumed in a “quasi-nonmetric” approach. The rationale for and numerical details of this approach are described and discussed, and the resulting EXSCAL method is illustrated on some data on perception of musical timbres.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have