Abstract
Since 1995, canola cultivars with herbicide resistance (HR) have been readily adopted by Canadian producers. Gene flow between these cultivars with different HR traits has led to the occurrence of double herbicide–resistant (2HR) volunteers. To evaluate the fitness of canola volunteers with double HR, we compared three 2HR combinations to each of their parent single-HR plants (1HR: glufosinate-R, imidazolinone-R, glyphosate-R) commercial canola lines in separate greenhouse experiments. The replacement series design included five ratios of 2HR vs. 1HR plants at a single density of 129 plants m−2and three stress treatments: herbicide application with either glufosinate, imazethapyr, or glyphosate; competition with a wheat crop; and a control without herbicide or wheat competition. Fitness indicators included aboveground biomass at 5 and 12 to 16 wk, seed production, and reproductive allocation. The 2HR plants showed delayed reproductive growth but were generally as competitive as 1HR commercial lines. Plant biomass of 2HR canola was comparable to or greater than 1HR canola, whereas seed biomass of 2HR canola was less than that of 1HR canola in half of the cases, likely because of delayed reproductive growth and early harvesting. Glufosinate–glyphosate 2HR was the fittest combination. Herbicide application had little effect on 2HR biomass at harvest, except for imazethapyr, which reduced the biomass and seed production of 2HR plants with imidazolinone-glyphosate resistance by 30%. The latter effect could have been from the unsuspected presence of 2HR plants with only one of the two acetolactate synthase mutations conferring resistance to imidazolinones. Wheat competition reduced fitness values of both 2HR and 1HR canola similarly, but seed production was still 64% that of the controls. Overall, there was little indication of reduced fitness in 2HR canola compared with commercial 1HR varieties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.