Abstract

Abstract Fission fragment angular distributions have been measured for 16O + 194Pt reaction forming the compound system 210Rn, in the laboratory energy range from 79 to 90 MeV. The measured fission fragment anisotropies as a function of E c . m . / V B are compared with the predictions of standard saddle point statistical model ( sspm ). Anisotropies calculated using the average excitation energy and angular momentum values could not reasonably fit the experimental data. Statistical model calculations were performed using the pace with modified fission barrier and level density parameters. Fission probability, evaporation residue cross section and neutron multiplicity were simultaneously used to fix the statistical parameters. Model calculations incorporating the chance nature of fission decay and scaled values of the rotating finite range model (RFRM) moment of inertia could reasonably fit the fragment angular anisotropies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.