Abstract

The quantum mechanical fragmentation theory (QMFT) based dynamical cluster-decay model (DCM) is applied to analyze the probable fission decay modes of 254Fm* compound nucleus produced in 16O+238U nuclear reaction at excitation energy EC*N =45.9 MeV. The fission valley of collective fragmentation potential and the multi-humped peaks of preformation probability P0 profile are analyzed by considering compact as well as elongated configurations of quadrupole (β2) deformed fragments. The competitive emergence of different symmetric [symmetric superlong (SL), symmetric supershort (SS)] and asymmetric [standard 1 (S1), standard 2 (S2), standard 3 (S3)] fission modes have been observed for the case of elongated configuration. The division of mass and charge in nuclear fission of 254Fm* depicts the importance of spherical and deformed magic shell closures. The most energetic light (AL and heavy (AH) decay fragments of aforementioned fission modes are identified. Moreover, the DCM-calculated fission cross-sections (σ fission) show reasonable agreement with the experimental measurements [24].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.