Abstract

Fisher's linear discriminant analysis (LDA) is an easy-to-use supervised dimensionality reduction method. However, LDA may be ineffective against complicated class distributions. It is well-known that deep feedforward neural networks with rectified linear units as activation functions can map many input neighborhoods to similar outputs by a succession of space-folding operations. This short paper shows that the space-folding operation can reveal to LDA classification information in the subspace where LDA cannot find any. A composition of LDA with the space-folding operation can find classification information more than LDA can do. End-to-end fine-tuning can improve that composition further. Experimental results on artificial and open data sets have shown the feasibility of the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.