Abstract
Rare earth elements and yttrium (REY) are widely recognized as strategic materials for advanced technological applications. Deep-sea sediments from the eastern South Pacific and central North Pacific were first reported as potential resources containing significant amounts of REY that are comparable to, or greater than, those of land-based deposits. Despite nearly a decade of research, quantitative abundances and spatial distributions of these deposits remain insufficient. Age controls are generally absent due to the lack of biostratigraphic constraints. Thus, the factors controlling the formation of REY-rich sediments are still controversial. In this study, the REY contents of surface sediments (<2 m depth) in 14 piston cores from the Central and Western Pacific were investigated. The results show that deep-sea sediments with high REY contents (>1000 μg/g) were mainly concentrated around seamounts (e.g., the Marshall Islands). The REY contents of surface sediments generally decreased with distance from the seamounts. Biostratigraphic and fish teeth debris (apatite) Sr isotopic stratigraphy of one piston core (P10) from the Central Pacific indicates that deep-sea sediments with high REY contents were aged from early Oligocene to early Miocene. Since the opening of the Drake Passage during the early Oligocene, the northward-flowing Antarctic Bottom Water (AABW) would have led to an upwelling of nutrients around seamounts with topographic barriers, and at the same time, AABW would delay the rate of sediment burial to try for enough time for REY entering and enriching in the apatite (fish teeth debris). Understanding the spatial distribution of fertile regions for REY-rich sediments provides guidance for searching for other REY resources in the Pacific and in other oceans.
Highlights
Rare earth elements and yttrium (REY) are widely recognized as strategic materials for advanced technological applications [1,2]
Deep-sea sediments from the eastern South Pacific and central North Pacific were first reported as potential resources containing significant amounts of REY, comparable to, or greater than, those of land-based deposits [6]
REY-rich deep-sea sediments have been found in the Indian Ocean [7]
Summary
Rare earth elements and yttrium (REY) are widely recognized as strategic materials for advanced technological applications [1,2]. Global demands for REY are increasing rapidly [3]. Deposits associated with intrusive carbonate complexes and ionadsorbed deposits are the world’s most important source of REY [4,5]. Considering the supply risk, many countries have begun to explore REY resources beyond traditional terrestrial mines. Deep-sea sediments from the eastern South Pacific and central North Pacific were first reported as potential resources containing significant amounts of REY, comparable to, or greater than, those of land-based deposits [6]. REY-rich deep-sea sediments have been found in the Indian Ocean [7]. The mineralogical, as well as major and trace elemental compositions, of deep-sea sediments have been investigated in the Pacific and India Ocean, with the goal of analyzing the host phase of REY elements and their provenance. It has been suggested that hydrothermal activity at mid-ocean ridges (MORs) plays a role in the formation of REY-rich muds; in addition, phillipsite content and sedimentation rate may affect the enrichment of REY in sediments [6]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have