Abstract

Tidal marsh wetlands represent critical habitat for many estuarine fishes and are particularly important to conserving and restoring native and at-risk species. We describe the seasonal and regional variation in the composition and abundance of fishes in interior tidal marsh channels in the upper San Francisco Estuary (SFE), and relate these to variation in environmental conditions. Fish were sampled quarterly using modified fyke nets from October 2003 to June 2005 in 18 interior tidal marsh channels spanning 3 distinct river systems: Petaluma River, Napa River and West Delta. We collected 116 samples and 9452 individuals of 30 fish species. Four non-native species dominated—Mississippi silverside, western mosquitofish, yellowfin goby, and rainwater killifish—with an additional 13 species occurring commonly (represented equally by natives and non-natives, residents and transients). Large seasonal differences in composition and abundance of fishes occurred, with the lowest abundances in winter and spring and highest abundances in summer and fall. Correlation of ordination scores and environmental variables further supported the importance of season, as well as fish species’ status (native vs. non-native), feeding preference (pelagic vs. demersal), and marsh utilization (resident vs. transient), as factors influencing fish assemblage composition. The proximity of the marsh systems to freshwater and marine influences, which largely control salinity and temperature variation, explained 26% of the variation in fish composition, while channel geomorphology explained 22%. We recommend that both edge habitat (which may be beneficial to fish foraging success) and the extent of tidal connectivity (which allows access for fishes), in addition to location along the estuarine gradient, be considered in designing and managing tidal marsh restoration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call