Abstract

Abstract Fischer–Tropsch synthesis (FTS) process aims at converting synthesis gas to liquid fuels. Due to high activity and long catalyst life, cobalt-based catalyst is currently the catalyst of choice for gas to liquid (GTL) technology. Water is most undesirable byproduct of FTS process. Due to low water–gas-shift (WGS) activity of cobalt-based catalyst, the water concentration rises with time-on-stream (TOS) in FTS. This paper reviews the effects of water on the performances of various cobalt catalysts for FTS. The effects of water on FTS is quite complex and depends on the support and its nature, Co metal loading, its promotion with noble metals, and preparation procedure. Added water up to certain concentrations has positive effects (in terms of higher CO conversion, C 5+ selectivity, olefin selectivity and lower methane and CO 2 selectivity) on unsupported cobalt oxide catalysts. If the effects of support are taken into account, water has positive effect for silica-supported catalysts. The effects are negative for alumina where as for titania support, water has little positive effect. However in general, oxidation of cobalt active site depending on the cluster size and water partial pressure, the removal of transport restrictions via the formation of water-rich intra-pellet liquids, and kinetic effects have been considered as the main responsible factors. The effects are strongly influenced by the cobalt cluster size as well as on pore size of the support. Addition of noble metals at low cobalt loading increases the dispersion of cobalt on the support and hence improves its activity. Higher cobalt dispersion enhances the negative impact of water especially at higher water partial pressures under FTS conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.