Abstract

First-principles plane-wave ultrasoft pseudopotential method within local density approach (LDA) has been used to study three possible vacancy-defect models for non-stoichiometric lithium niobate (LiNbO 3): (1) the oxygen-vacancy model V O 2 + + 2 V Li - , (2) the niobium-vacancy model 5 Nb Li 4 + + 4 V Nb 5 - , and (3) the lithium-vacancy model 4 V Li - + Nb Li 4 + . The corresponding formation energies are obtained via energy minimization of a supercell. In Nb-rich environment, the calculated defect formation energies, both under oxidation and reduction conditions, show little effect on the intrinsic defect structures. We find that the lithium vacancy model 4 V Li - + Nb Li 4 + has the most stable configuration in the non-stoichiometric lithium niobate crystals. Our calculations also show that the formation of any type of neutral defects and Frenkel pairs in a Nb-rich environment is difficult.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.