Abstract
Ab initio methods based on density functional theory have been used to calculate the formation energies of intrinsic defects, including vacancies, interstitials, antisites and Frenkel pairs in YPO 4 under the O-rich and Y 2O 3-rich, and the O-rich and Y-rich conditions. The larger size of the yttrium atom may give rise to higher formation energy of the phosphorus antisite defect. In general, the formation energies of anion interstitials are much smaller than those of cation interstitials for both conditions considered. It is of greatly interest to find that the relative stabilities among the same types of interstitials are independent of the reference states. The most stable configuration for oxygen interstitials is an O–O split interstitial near the T a site, while the most stable configuration for cation interstitials is a tetrahedral interstitial near the T a site. The cation split interstitials are unfavorable in YPO 4, with much higher formation energies. Furthermore, the properties of Frenkel pairs are compared with those calculated using empirical potentials. The results reveal that both ab initio and empirical potential calculations show a similar trend in the formation energies of Frenkel pairs, but the formation energies obtained by empirical potentials are much larger than those calculated by ab initio method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.