Abstract
All-inorganic perovskite CsSnI3 has attracted intense research interests due to its prominent optoelectronic properties, high thermal stability, and environmentally friendly character. The surface energies and electronic structures of black orthorhombic (γ) CsSnI3 surfaces are investigated by using first-principles methods. The anisotropic and termination-dependent surface energies of low-index surfaces (i.e., the (110), (001), (100) and (101) surfaces) are obtained, providing important data for CsSnI3, since these values are difficult to be measured in experiments. The CsI-terminated (110) and (001) surfaces are predicted to be the most stable and their surface energies are close, making the cube-shape of nanocrystals favorable at thermodynamic equilibrium, which is consistent with the experimental observations. Calculated surface electronic structures show that the quantum confinement effect is orientation dependent. The band gaps of the (100) and (101) surfaces are significantly larger than those of the (110) and (001) surfaces by using slabs with similar thickness. This distinction can be attributed to different 'electronic dimensionalities' of these surfaces. Our results provide physical insights into the thermodynamic stability and electronic properties of CsSnI3 surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.