Abstract

First‐principles calculations are carried out to study the surface structure, energies, and electronic properties of Ni3Nb(100), Ni3Nb(001), and Ni3Nb(110) based on the density functional theory (DFT). The surface relaxation results reveal that the relaxations are mainly localized in the first and second atomic layer, and Ni3Nb(110)‐Ni experiences the largest surface relaxation (–16.95%), whereas Ni3Nb(001)‐NiNb undergoes smallest relaxations. The surface energies of nonstoichiometric surfaces present a linear relationship with the chemical potential of Ni (ΔμNi), while those of stoichiometric surface are independent of ΔμNi. Furthermore, Ni3Nb(001)–Ni and Ni3Nb(001)–NiNb are the most stable surfaces owing to their having the lowest surface energy in a wide range of ΔμNi, while the nonstoichiometric Ni3Nb(110)–Ni and Ni3Nb(110)–NiNb surfaces with the largest surface energies are the most unstable surfaces. The electronic structures of nonstoichiometric surfaces are different from that of the bulk Ni3Nb, whereas the effect of surface relaxation on the electronic properties of the stoichiometric surface is weak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.