Abstract

A first-principles method was used to explore the influence of tensile strain on the electrical and optical characteristics of Nb-doped MoSe2. The tensile strain has been discovered to have a higher influence on the electrical structure of the Nb-doped MoSe2 system than pure monolayer MoSe2. According to the energy band structure study, the pure monolayer MoSe2 is a direct bandgap semiconductor, but the system doped with Nb instead of Mo atoms is a p-type-doped semiconductor. The bandgap of the Nb-doped MoSe2 system decreases gradually with the increase of tensile strain, but still maintains the p-type semiconductor properties, and the bandgap of the pure monolayer MoSe2 also decreases gradually with the increase of tensile strain. From the density of states analysis, it is found that for the total density of states of the doped system at different tensile strains, it is mainly contributed by the Mo-4d and Se-4p orbitals. The optical properties analysis showed that the doped system under tensile strain had higher absorption coefficient and reflectance peak than the Nb-doped MoSe2 system without tensile strain. Additionally, the doped system showed redshift phenomenon in both the absorption and reflection peaks as the tensile strain increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.