Abstract

The electronic and magnetic bulk properties of half-metallic Heusler alloys such as Co${}_{2}$FeSi, Co${}_{2}$FeAl, Co${}_{2}$MnSi, and Co${}_{2}$MnAl are investigated by means of ab initio calculations in combination with Monte Carlo simulations. The electronic structure is analyzed using the plane-wave code quantum espresso and the magnetic exchange interactions are determined using the Korringa-Kohn-Rostoker (KKR) method. From the magnetic exchange interactions, the Curie temperature is obtained via Monte Carlo simulations. In addition, electronic transport properties of trilayer systems consisting of two semi-infinite platinum leads and a Heusler layer in-between are obtained from the fully relativistic screened KKR method by employing the Kubo-Greenwood formalism. The focus is on thermoelectric properties, namely, the Seebeck effect and its spin dependence. It turns out that already thin Heusler layers provide highly spin-polarized currents. This is attributed to the recovery of half-metallicity with increasing layer thickness. The absence of electronic states of spin-down electrons around the Fermi level suppresses the contribution of this spin channel to the total conductance, which strongly influences the thermoelectric properties and results in a spin polarization of thermoelectric currents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call