Abstract

AbstractFor energy‐efficient and high‐power illumination systems, phosphor materials have attracted huge research attention over the recent decades. Herein, applying the first‐principles method, we investigate and predict the optoelectronic and structural properties of light‐harvesting phosphors Z2SiF6 (Z = K, Li, Na, Rb) as promising candidates for weight‐light‐emitting diodes w‐LEDs. The calculated direct energy band gaps are of order 1.56, 1.461, 1.479, and 1.585 eV for Z2SiF6 (Z = K, Li, Na, Rb), respectively, thus rendering the compound's semiconducting nature suitable for optoelectronic applications. Calculated structural properties show that Rb2SiF6 is the most stable compound among Z2SiF6 (Z = K, Li, Na, Rb). The optical properties in the energy range of 0–14 eV have been investigated using the well‐known (GGA) formulism available in the literature. Studied compounds are active optical materials as the value of their refractive index is between 1.0 and 2.0. Based on investigated optical parameters, we can say that Z2SiF6 (Z = K, Li, Na, Rb) are potential candidates for optoelectronic device applications like white LEDs (w‐LEDs). Thermodynamic parameters of Z2SiF6 (Z = K, Li, Na, Rb) are provided to establish the thermodynamic stability of these compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.