Abstract

High-throughput quantum mechanics based simulations have been carried out to establish the change in lattice parameter and superlattice intrinsic stacking fault (SISF) formation energies in Ni3Al-based alloys using the axial Ising model. We had direct access to the variation in SISF energies due to finite compositional change of the added ternary transition metal (TM) element through constructing large supercells, which was equally necessary to account for chemical disorder. We find that most added TM ternaries induce an important quasi-linear increase in the SISF energy as a function of alloying composition x. The most pronounced increase corresponds to Fe addition, while Co addition decreases the SISF energy monotonically. Our results shed light on the role played by TM elements on strengthening L12 Ni3Al precipitates against stacking fault shear. The data are of high importance for designing new Ni-based superalloys based on computational approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call