Abstract

First-principles calculations of the total energy of interstitial and substitutional solid solutions in intermetallic compound Ni3Al were performed based on methods using Vienna ab-initio simulation package (VASP). The results of the calculations for interstitial solutions of carbon in Ni3Al confirmed the priority role of chemical interactions over deformational ones for the nearest neighbors. We attempted to use first-principles methods of calculation of the deformation interaction and continuum approaching in the theory of solutions to calculate coefficients of the concentration changes of the lattice spacing. Comparison of the calculation results with experimental data of substitutional impurities in Ni3Al has shown that the proposed method can aid in the study of the distribution of impurity atoms on the sublattices of the ordered phases, intermetallic compounds. We have proposed a method of calculating the partial molar volume of impurity in interstitial solid solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call