Abstract

A wide-range (0 to 1044.0 g/cm^{3} and 0 to 10^{9}K) equation-of-state (EOS) table for a CH_{1.72}O_{0.37}N_{0.086} quaternary compound has been constructed based on density-functional theory (DFT) molecular-dynamics (MD) calculations using a combination of Kohn-Sham DFT MD, orbital-free DFT MD, and numerical extrapolation. The first-principles EOS data are compared with predictions of simple models, including the fully ionized ideal gas and the Fermi-degenerate electron gas models, to chart their temperature-density conditions of applicability. The shock Hugoniot, thermodynamic properties, and bulk sound velocities are predicted based on the EOS table and compared to those of C-H compounds. The Hugoniot results show the maximum compression ratio of the C-H-O-N resin is larger than that of CH polystyrene due to the existence of oxygen and nitrogen; while the other properties are similar between CHON and CH. Radiation hydrodynamic simulations have been performed using the table for inertial confinement fusion targets with a CHON ablator and compared with a similar design with CH. The simulations show CHON outperforms CH as the ablator for laser-direct-drive target designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.