Abstract

The K/Si(111):B 3×3 surface, with one K atom per 3×3 unit cell, is considered a prototypical case of a surface Mott phase at room temperature. Our Density Functional Theory (DFT) Molecular Dynamics (MD) and free energy calculations show, however, a 23×3 Charge Density Wave (CDW) ground state. Our analysis shows that at room temperature the K atoms easily diffuse along the lines of a honeycomb network on the surface and that the 3×3 phase appears as the result of the dynamical fluctuations between degenerate CDW states. DFT-MD free energy calculations also show a 23×3↔3×3 transition temperature below 90 K. The competing electron-electron and electron-phonon interactions at low temperature are also analyzed; using DFT calculations, we find that the electron-phonon negative-U* is larger than the electron-electron Hubbard U, indicating that the CDW survives at very low temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call