Abstract

The electronic structures, dipole moment and optical properties of C–N-doped and C–N-codoped anatase titanium dioxide (TiO 2) are studied using the plane-wave ultrasoft pseudopotential method of density functional theory (DFT). The results revealed that the absorption coefficients of pure TiO 2 and N-doped TiO 2 are consistent with experimental values in the visible-light region. The bands originating from C/N-2p states lie in the band gap of doped TiO 2. A visible-light absorption edge red-shift can be observed. The atomic charges have changed, resulting in devation of the center of gravity of the negative electric charge from the positive electric charge in the super-cell, and their dipole moment would not be zero. The dipole moment has large influence on the optical responses in the visible region of TiO 2. Because of the small distance (0.531 nm) between C and N atoms, the covalent bond component was easily enhanced between C atom and adjacent O atom, the covalent bonds making it more difficult for the carrier transfer. Moreover, its optical absorption coefficient is going to reduce in the visible-light region. Under the condition of the larger distance (0.691 nm) between C and N atoms, their interaction can be reduced, which is beneficial to electrons transition; as a result, a significant improvement of the photocatalytic activity of TiO 2 has been found under the visible-light irradiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.