Abstract

The electronic band structures of zinc-blende ZnTe and CdTe are calculated by using a self-consistent full-potential linearized augmented plane-wave method within the first-principle formalism. In order to clarify the electronic properties near the Brillouin-zone (BZ) center and give an effective guideline on the material design for electronic and optical devices, we link the first-principle band calculations with the effective-mass approximation. The electronic properties are analytically studied on the basis of the effective-mass Hamiltonian for zinc-blende symmetry. The effective-mass parameters, such as crystal-field splitting, spin-orbit splitting, electronic effective mass,and the hole effective mass and the corresponding Luttinger-like parameters, are determined by reproducing the calculated band structures near the BZ center. The obtained results are in good agreement with available experimental and theoretical values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.