Abstract

AbstractThe power-law scale dependence, or scaling, of first-order structure functions of the tropospheric water vapor field between 58°S and 58°N is investigated using observations from the Atmospheric Infrared Sounder (AIRS). Power-law scale dependence of the first-order structure function would indicate that the water vapor field exhibits statistical scale invariance. Directional and directionally independent first-order structure functions are computed to assess the directional dependence of derived first-order structure function scaling exponents (H) for a range of scales from 50 to 500 km. In comparison to other methods of assessing statistical scale invariance, the methodology used here requires minimal assumptions regarding the homogeneity of the spatial distribution of data within regions of analysis. Additionally, the methodology facilitates the evaluation of anisotropy and quantifies the extent to which the structure functions exhibit scale invariance.The spatial and seasonal dependence of the computed scaling exponents are explored. Minimum scaling exponents at all levels are shown to occur proximate to the equator, while the global maximum is shown to occur in the middle troposphere near the tropical–subtropical margin of the winter hemisphere.From a detailed analysis of AIRS maritime scaling exponents, it is concluded that the AIRS observations suggest the existence of two scaling regimes in the extratropics. One of these regimes characterizes the statistical scale invariance the free troposphere with H approximately = 0.55 and a second that characterizes the statistical scale invariance of the boundary layer with H approximately = ⅓.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.