Abstract

Acanthocephalans of the order Echinorhynchida are one of the most diverse groups in their phylum, with approximately 470 species classified into 11 families that largely consist of parasites of freshwater, brackish and marine fishes and, sporadically, reptiles and amphibians distributed worldwide. Previous phylogenies inferred with molecular data have supported the paraphyly or polyphyly of some families, suggesting that most of them have been diagnosed based on unique combinations of characters, rather than shared derivative features. We expand the taxonomic sampling of several genera such as Acanthocephalus, Echinorhynchus and Pseudoacanthocephalus of Echinorhynchidae from diverse biogeographical zones in the Americas, Europe and Asia with the aim of testing the monophyly of the family by using two molecular markers. Sequences from small (SSU) and large (LSU) subunits of ribosomal DNA were obtained for six species representing the genera Acanthocephalus and Echinorhynchus from the Neotropical, Nearctic, Palearctic and Oriental regions. These sequences were aligned with other sequences available in the GenBank dataset from Echinorhynchidae. Phylogenetic trees inferred with the combined (SSU+LSU) and the individual data sets consistently placed the genera Acanthocephalus, Pseudoacanthocephalus and Echinorhynchus into three independent lineages. Two families, Paracanthocephalidae Golvan, 1960, and Pseudoacanthocephalidae Petrochenko, 1956, were resurrected to accommodate the genera Acanthocephalus and Pseudoacanthocephalus, respectively. The species of the genus Acanthocephalus from the Nearctic, Palearctic and Oriental biogeographic regions formed a clade that was well supported. However, Acanthocephalus amini from the Neotropical region was nested inside Arhythmacanthidae. Therefore, the genus Calakmulrhynchus was created to accommodate A. amini and resolve the paraphyly of Acanthocephalus. Finally, the diagnoses of the families Echinorhynchidae and Arhythmacanthidae were amended. The molecular phylogenies should be used as a taxonomic framework to find shared derived characters (synapomorphies) and build a more robust classification scheme that reflects the evolutionary history of the acanthocephalans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call