Abstract

Autocatalytic phenomena in chemical kinetics originate from various reasons, such as acid-catalytic effects of reaction products or change of the physical properties of the reaction mixture. The impact of autocatalytic kinetics on the chemical reactor design is crucially important leading to deviations from standard design rules. The impact of autocatalytic effects on first, second and nth order kinetics was investigated for batch, plug flow, backmixed, axial dispersion and recycled plug flow reactors was analyzed by classical approach and numerical simulations. Efficient numerical strategies were developed for the different reactor models. The results showed how an optimal degree of backmixing (Péclet number) and optimal recycle ratio can be determined for tubular reactors and how the reactor volume can be minimized for specific cases. Generic examples as well as hydrolysis of alkyl formate were considered as case studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.