Abstract
AbstractThe interaction of energy-exchange processes between the atmosphere and the Earth surface determines the surface temperature regime. It is of fundamental importance to the question whether frozen ground exists at a given site and how rapidly it may decay in response to a climatic perturbation. To further our understanding of these processes, measurements concerning near-surface energy-exchange processes were initiated in January 1997 on creeping permafrost at a high mountain site, Murtèl-Corvatsch, upper Engadin, Swiss Alps. Data on all important energy-balance fluxes were collected. In this paper, we present ground-temperature and energy-balance measurements from Murtèl-Corvatsch for a 2 year period, 1997–99. We will examine the relative importance of the energy-balance components and discuss special problems relating to the coarse surface layer. The results indicate a non-zero energy budget, with a positive deviation of up to 78 W m 4 in winter and a negative deviation of up to –130 W nT2 in summer. We propose that this overall imbalance of the energy-exchange fluxes, as well as the significant difference between mean annual surface and ground temperatures/can be explained by unmeasured advective energy fluxes that occur within the layer of large boulder blocks at the top of the permafrost.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have