Abstract
Graphene-based materials are excellent acceptors of the CRET phenomenon. Due to the presence of -conjugated planar structure, these materials were reported to quench the chemiluminescence (CL) signal. Based on this fact, herein, for the first time, the recovery of quenched CL signal from different graphene-based materials is successfully obtained through the catalytic activity of onsite temperature. The maximum recovery of a quenched signal at an optimum temperature of 70 was 1440% from the 10 mg ml−1 reduced graphene oxide paper analytical devices. The recovery of flash graphene and laser induced graphene materials were found to be 895% and 521%, respectively, for the same conditions via the generation of -conjugated carbon radicals. Catechin, an antioxidant, was analyzed from 0.1 nM to 500 nM to interpret the generation of carbon radicals from graphenized materials. The proposed smartphone-enabled onsite heating recovery model was validated with the lower limit of 94 pM (27.3 pg ml−1) of catechin concentration without advanced photodiodes or instrumentation. The validation was performed in real samples of green tea (1 and 2). This method of CL recovery can be a future model for indicating the purity of graphene-based materials without using advanced instrumentations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.