Abstract

The oxidation reaction between periodate and polyhydroxyl compounds was studied. A strong chemiluminescent (CL) emission was observed when the reaction took place in a strong alkaline solution without any special CL reagent. However, in acidic or neutral solution, it was hard to record the CL with our instrument. It was interesting to find that in the presence of carbonate the CL signal was enhanced significantly. When O(2) gas and N(2) gas were blown into the reagent solutions, both background and CL signals of the sample were enhanced by O(2) and decreased by N(2). The spectral distribution of the CL emission showed two main bands (λ = 436-446 and 471-478 nm). Based on the studies of the spectra of CL, fluorescence and UV-visible, a possible CL mechanism was proposed. In strongly alkaline solution, periodate reacts with the dissolved oxygen to produce superoxide radical ions. A microamount of singlet oxygen ((1)O(2)*) could be produced from the superoxide radicals. A part of the superoxide radicals acts on carbonates and/or bicarbonates leading to the generation of carbonate radicals. Recombination of carbonate radicals may generate excited triplet dimers of two CO(2) molecules ((CO(2))(2)*). Mixing of periodate with carbonate generated were very few (1)O(2)* and (CO(2))(2)*. These two emitters contribute to the CL background. The addition of polyhydroxyl compounds or H(2)O(2) caused enhancement of the CL signal. It may be due to the production of (1)O(2)* during the oxidized decomposition of the analytes in periodate solution. This reaction system has been established as a flow injection analysis for H(2)O(2), pyrogallol, and α-thioglycerol and their detection limits were 5 × 10(-)(9), 5 × 10(-)(9), and 1 × 10(-)(8) M, respectively. Considering the effective reaction ions, IO(4)(-), CO(3)(2)(-), and OH(-) could be immobilized on a strongly basic anion-exchange resin. A highly sensitive flow CL sensor for H(2)O(2), pyrogallol, and α-thioglycerol was also prepared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.