Abstract

BackgroundGrey mould caused by Botrytis cinerea Pers. (teleomorph Botryotinia fuckeliana (de Bary) Whetzel) is one of the most destructive fungal diseases of Mediterranean crops. In Algeria, few studies have been made on the economic impact of this disease. Nevertheless, it is practically present in all tomato and strawberry greenhouses, as well as in prospected vineyards in the north and south of the country. The complexity of chemical control of this disease has led to search for Trichoderma strains that are effective in biological control.ResultsFifteen isolates of Trichoderma spp. were obtained from vigorous and healthy plants (tomatoes, strawberries, and vines) rhizosphere, and from a commercial bio-compost (Bio-composte®), then identified as T. afroharzianum (four isolates), T. gamsii (four isolates), T. longibrachiatum (three isolates), T. atroviride (one isolate), T. brevicompactum (one isolate), T. breve (one isolate), and T. lixii (one isolate) on the basis of DNA sequence analysis of four genes (ITS, tef1, rpb2, and acl1). In vitro biocontrol tests revealed that four Algerian isolates of Trichoderma spp. (TAtC11, TGS7, TGS10, and TBS1) had a high antagonistic activity against B. cinerea, the mycelial growth has been reduced by 62 to 65% in dual-culture technique, by 62.31 to 64.49% in volatile compounds test, and a high inhibition of germling growth was recorded by TBS1 isolate with 90.68% in Culture filtrates test. Biocontrol tests carried out on tomato plants with T. brevicompactum (TBS1), T. atroviride (TAtC11), and T. lixii (TLiC8) against B. cinerea (BCT04) showed that TBS1 inoculation significantly reduced the incidence of disease by 64.43 and 51.35% in preventive and curative treatment, respectively.ConclusionThe present study revealed the first report of T. brevicompactum, T. breve, and T. lixii in Algeria, and it also contributes to the promotion of the use of native strains of Trichoderma in biological control leading to a better preservation of soil microbial diversity.

Highlights

  • Grey mould caused by Botrytis cinerea Pers. (teleomorph Botryotinia fuckeliana Whetzel) is one of the most destructive fungal diseases of Mediterranean crops

  • The main objective of the present study is to identify native strains of Trichoderma which are effective in biological control of B. cinerea, and this could help to minimize the use of pesticide and protecting the environment

  • Results revealed that the isolates TAS2, TAS4, TAS5, and TAS8 belong to Harzianum clade, and presented a (99%) of nucleotide identity with the reference sequences of the specie T. afroharzianum, for the tef1 (KP008850) and rpb2 genes (FJ442691) and (96%) with the species T. simmonsii, for acl1 gene (KJ665182)

Read more

Summary

Introduction

Grey mould caused by Botrytis cinerea Pers. (teleomorph Botryotinia fuckeliana (de Bary) Whetzel) is one of the most destructive fungal diseases of Mediterranean crops. The chemical control of the grey mould has become difficult because this disease presents a wide genetic variability and a high capacity to acquire resistance against fungicides, classifying it as a high-risk plant pathogen (Shao et al 2021). To solve this problem, many researchers have proposed alternative methods to control this disease, such as application of biological control agents, plant extracts, minerals, and organic compounds (Nicot et al 2011)

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.