Abstract
Metaplexis japonica (Thunb.) Makino, commonly known as rough potato, has a wide distribution in China, Japan, Korea, and adjacent Russia. In China, M. japonica is a traditional herbal medicinal plant, which is also cultivated as a vegetable (Shi et al. 2020; Wei et al. 2019). In July 2023, leaves of M. japonica plants growing near a soybean field in Qingdao, Shandong province, exhibited leaf crinkling, mosaic and distorting symptoms of probable virus infection (Supplementary Figure 1). The disease incidence in a 50 m2 area was approximately 40%. To identify the suspected viral etiological agents, symptomatic leaves from 10 M. japonica plants were collected and pooled to perform small RNA deep sequencing (sRNA-Seq). TransZol Up Total RNA Extraction Kit (TransGen Biotech, Beijing, China) was used to extract total RNA. Small RNA library construction and high-throughput sequencing (HTS) were performed on Illumina NovaSeq platform by Genepioneer (Nanjing, China) (Li et al. 2024). A total of 17,384,311 raw reads were obtained. Redundant reads were removed by cutadapt software (version 1.18) to obtain 11,580,876 clean reads with 18 to 26 nucleotide (nt) sizes. The clean reads were assembled using velvet software (version 1.1.07). A total of forty-six small contigs from 42 to 283 nt were identified, with 85 to 100% nucleotide sequence identities, respectively, to metaplexis yellow mottle-associated virus (MeYMaV, genus Caulimovirus, family Caulimoviridae, accession numbers: NC_077108.1). Finally, 1,355,955 reads (11.71% mapped ratio of total reads, cover 56.7% over the MeYMaV genome) were mapped to the genome of MeYMaV by bwa software (version 0.7.17-r1188). To confirm the sRNA-Seq results, PCR was performed with specific primers MeYMaV-N-F/MeYMaV-N-R (5'-TGGTATCAGAGCCTAGTTAA-3'/5'-GGAGTTGGTAATGTATTACC-3') and MeYMaV-C-F/MeYMaV-C-R (5'-AATGGAACGGCTGTTAGTAT3'/TTAATTTCTAGCCCTTGGCTACTTAC). Both the primer pairs were designed using GenBank accession numbers: NC_077108.1 (Yang et al. 2021) to obtain the N and C terminals genome fragments of 10 MeYMaV plants. Two amplicons approximately in 4000-, and 3900-bp sizes were amplified (Supplementary Figure 2), sequenced (tsingke, Beijing, China) and aligned to obtain 7,742-nt complete MeYMaV genome sequence (Accession no. PP892524). BLASTn analysis revealed 90.16% and 92.18% sequence identity, respectively, with the MeYMaV isolate LM-Cau-A (NC_077108.1) based on complete genome and coat protein sequences, respectively. Previously, cucumber mosaic virus and MeYMaV were reported in M. japonica from Jiangsu and Liaoning provinces in China, respectively (Yang et al. 2018; 2021). To our knowledge, this is the first natural infection report of MeYMaV in M. japonica in Shandong, China. The natural occurrence of MeYMaV is not only affects the quality of M. japonica, but also poses a potential threat to surrounding crops. This study enriches information on the disease distribution of MeYMaV and will be helpful for disease management.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have