Abstract
Muskmelon(Cucumis meloL.) is one of the most widely cultivated and economically important fruit crops in the world.However, many pathogens can cause decay ofmuskmelons; among them,Fusarium spp. is the most important pathogen, affecting fruit yield and quality (Wang et al. 2011). In May 2017, fruitrot symptoms were observed on ripening muskmelons (cv. Jipin Zaoxue) in several fields in Liaocheng of Shandong Province, China. Symptoms appeared as brown, water-soaked lesions, irregularly circular in shape, with the lesion size ranging from a small spot (1 to 2 cm) to the decay of the entire fruit. The core and the surface of the infected fruit were covered with white to rose-reddish mycelium. Two infected muskmelons were collected from each of two fields, 10 km apart.Tissues from the inside of the infected fruit were surface disinfected with 75% ethanol for 30 s, and cultured on potato dextrose agar (PDA) at 25 °C in the dark for 5 days. Four purified cultures were obtained using the single spore method.On carnation leaf agar (CLA), macroconidia had a pronounced dorsiventral curvature, falcate, 3 to 5 septa, with tapered apical cell, and foot-shaped basal cell, measuring 19 to 36 × 4 to 6 μm. Chlamydospores were abundant, 5.5-7.5 μmwide, and 5.5-10.5 μm long, ellipsoidal or subglobose. No microconidia were observed. These morphological characteristics were consistent with the descriptions ofF. pernambucanum (Santos et al. 2019). Because these isolates had similar morphology, one representative isolate was selected for multilocus phylogenetic analyses. DNA was extracted from the representative isolate using the CTAB method. The nucleotide sequences of the internal transcribed spacers (ITS) (White et al. 1990), translation elongation factor 1-α gene (TEF1), RNA polymerase II second largest subunit gene (RPB2), calmodulin (CAM) (Xia et al. 2019) were amplified using specific primers, sequenced, and deposited in GenBank (MN822926, MN856619, MN856620, and MN865126). Based on the combined dataset ofITS,TEF1,RPB2,CAM, alignments were made using MAFFT v. 7, and phylogenetic analyses were processed in MEGA v. 7.0 using the maximum likelihood method. The studied isolate (XP1) clustered together withF. pernambucanum reference strain URM 7559 (99% bootstrap). To perform pathogenicity test, 10 μl of spore suspensions (1 × 106 conidia/ml) were injected into each muskmelon fruit using a syringe, and the control fruit was inoculated with 10 μl of sterile distilled water. There were ten replicated fruits for each treatment. The test was repeated three times. After 7 days at 25 °C, the interior of the inoculated muskmelons begun to rot, and the rot lesion was expanded from the core towards the surface of the fruit, then white mycelium produced on the surface. The same fungus was re-isolated from the infected tissues and confirmed to fulfill the Koch's postulates. No symptoms were observed on the control muskmelons. To our knowledge, this is the first report of F. pernambucanum causing of fruit rot of muskmelon in China. Considering the economic value of the muskmelon crop, correct identification can help farmers select appropriate field management measures for control of this disease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.