Abstract

Root rot is an important disease of tea plants owing to its unobvious early symptoms and permanent damage (Huu et al. 2016). In 2019, 5% of tea plants displayed symptoms consistent with root rot in a tea plantation (28°09'N, 113°13'E) located in Changsha city, Hunan province of China. The symptoms of the diseased tea plants ranged from wilting leaves to entirely dead. The roots had black lesions and rot typical of this disease. Symptomatic roots were collected, washed with water and disinfected with 75% ethanol, then cut into pieces and sterilized with 0.1% mercuric chloride for 30 s, 75% ethanol for 1 min, and rinsed with sterile water five times. After drying on sterilized filter paper, root tissues were cultured on potato dextrose agar (PDA) medium at 25 oC for 7 days in the dark. Four isolates, CAGF1, CAGF2, CAGF3, and CAGF4 were purified by selecting single spores. All isolates were subjected to a pathogenicity test. A conidial suspension of each strain was collected at a concentration of 2×106 conidia/mL. For the pathogenicity test, two-year-old field grown tea plants were transplanted in plastic pots containing 240 g of the rice grain-bran mixture (inoculated with 4 mL of conidial suspension and cultured for 14 days) and 960 g of sterilized soil (Huu et al. 2016). The pots without inoculated mixture served as control group. All the pots were kept in illumination incubators at 25 oC and a 12L:12D photoperiod. The pathogenicity test for each strain was repeated three times with three repetitions. Only strain CAGF1 exhibited pathogenicity to tea plants. Symptoms appeared on the third day post inoculation (dpi) and gradually worsened by the 7 dpi. On the 14 dpi, most leaves had died and the roots were black and partially rotten, similar to field symptoms. The reisolated fungus from potted roots was identified as CAGF1 based on ITS region and colony morphology, while isolation was attempted, CAGF1 was not isolated from the control plants, which fulfilled Koch's postulates. On PDA, the colony center of CAGF1 was purple with white margin, while on carnation leaf agar (CLA) medium was white. On CLA medium, macroconidia have 0 to 3 septa, measured 19.1 μm to 41.2 μm × 4.2 μm to 5.4 μm (mean= 31.2 μm × 4.8 μm, n=30). The microconidia were measured as 6.7 μm to 12.8 μm × 2.4 μm to 4.9 μm (mean= 10.1 μm × 3.3 μm, n=30), with 0 to 1 septa. And the chlamydospores were measured as 6.0 to 9.7μm (mean= 7.7μm, n=30). Morphologically, strain CAGF1 was identified as Fusarium oxysporum (Leslie and Summerell 2006). Additionally, the genomic DNA of strain CAGF1 was extracted by cetyltrimethylammonium bromide (CTAB) method, the internal transcribed spacer (ITS), elongation factor 1 alpha (EF-1α) and second largest subunit of RNA polymerase II (RPB2) were amplified using the primers ITS1/ITS4 (White et al. 1990), EF-1/EF-2 (Geiser et al. 2004) and fRPB2-5F/fRPB2-7cR (Liu et al. 1999), respectively. Sequences were deposited in GenBank (ITS, OK178562.1; EF-1α, OK598121.1; RPB2, OP381476.1). BLASTn searches revealed that strain CAGF1 was 100% (ON075522.1 for ITS and JX885464.1 for RPB2) and 99.6% (JQ965440.1 for EF-1α) identical to Fusarium oxysporum species complex (FOSC). Based on phylogenetic analysis, the strain CAGF1 was identified as Fusarium cugenangense, belonging to FOSC. To our knowledge, this is the first report of F. cugenangense causing root rot of tea plants in China. The findings are important for the management of this root rot and the improvement of economic benefits of tea cultivation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call