Abstract

A new method to provide a self-consistent electronic structure, field, and current distribution for an atomistic bielectrode system with applied bias voltages is presented. In our method the scattering waves are calculated by a step-by-step recursion-matrix method and two different Fermi levels are assigned to each electrode in accord with a given applied bias voltage. The method is applied to the scanning tunneling microscope (STM) system around the contact region. The tip-surface chemical interaction induced by the electric fields is shown to be important for the extreme specificity of atom extraction by STM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.