Abstract

We report results from a detailed analysis of dopant adsorption and diffusion on surfaces of ZnSe nanocrystals and discuss their implications for dopant incorporation into the growing nanocrystals. Using first-principles density functional theory calculations, we find that the binding energy for Mn dopant adsorption onto various surface sites of the dominant dopable surface, ZnSe(0 0 1)-(2 × 1), increases with increasing dopant surface concentration. Due to low activation barriers, dopant atoms can migrate fast along the Se dimer rows without substantial surface relaxation, while their diffusion across the dimer rows is governed by a high-barrier pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.