Abstract

A theoretical study of the oxidation of InP(001)-(2 × 4) surface is performed using density functional theory methods. Our results on surface oxidation show that the oxygen adsorption does not produce any gap states in the bulk InP band gap, due to the saturation of surface In dangling bonds, whereas substitutional oxygen atoms produce gap states. This study also shows that the surface stability increases with the oxygen content, indicating a strong tendency for surface oxidation. Our results help to clarify the origin of surface gap states upon surface oxidation and provide an insight at the atomic level the mechanism of surface oxidation, which will assist in the understanding of the degradation of III-V devices upon oxygen exposure or interfacial oxidation with high dielectric constant oxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.