Abstract
First principles calculations are performed for the perfect GaAs crystal, the double Ga vacancies (VGa)₂, and the ternary complex defect (AsGaVAsVGa), using the state-of-the-art computational method with the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional to correct the band gap and account for a proper description of the interaction between defects states and bulk states. Three shallow acceptor defect levels are found due to the creation of (VGa)₂ with nearest-neighbor As dangling bonds. However, for GaAs with the ternary complex defects (AsGaVAsVGa), the As antisite AsGa and the VAs'S nearest-neighbor Ga dangling bonds provoke several donor defect states. The lowest donor defect state locates at 0.85 eV below the bottom of conduction band, which is very close to the experimental observation of the EL2 defect level. In addition, structual evolution from (VGa)₂ defect to the ternary defect complex (AsGaVAsVGa) is simulated by ab initio molecular dynamic (MD) calculation at different temperatures. The MD results demonstrate that the ternary complex defect (AsGaVAsVGa) can be converted from the double Ga vacancies (VGa)₂ at room temperature, and it can exist stably at higher temperature. The present work is helpful to unravel the microstructure and the forming mechanism of the EL2 defect, to find out methods to improve the performance of the GaAs saturable absorber by changing the growth conditions of GaAs crystal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.