Abstract

Based on first principles density functional theory calculations, boron is proposed as a promoter to improve the coking resistance of Ni-based catalysts. Three types of chemisorbed carbon are distinguished on the Ni(1 1 1) surface: on-surface carbon is an important reaction intermediate, while both bulk carbon and graphene islands are unavailable for reaction and might lead to catalyst deactivation. Promotion by small amounts of boron was found to inhibit the formation of bulk carbon and weaken the on-surface carbon binding energy, possibly slowing down the formation of graphene islands. To confirm the activity of the boron promoted Ni catalyst, the activation energy for methane activation was calculated. A modest increase by 12 kJ/mol was found upon boron promotion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.