Abstract

We study the magnetic, structural, and electronic properties of the recently discovered iron- based superconductor BaFe2S3 based on density functional theory with the generalized gradient approximation. The calculations show that the magnetic alignment in which the spins are coupled ferromagnetically along the rung and antiferromagnetically along the leg is the most stable in the possible magnetic structure within an Fe-ladder and is further stabilized with the periodicity char- acterized by the wave vector Q=(pi,pi,0), leading to the experimentally observed magnetic ground state. The magnetic exchange interaction between the Fe-ladders creates a tiny energy gap, whose size is in excellent agreement with the experiments. Applied pressure suppresses the energy gap and leads to an insulator-metal transition. Finally, we also discuss what type of orbitals can play crucial roles on the magnetic and insulator-metal transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.