Abstract
The interactions of oxygen atoms on the GaAs(001)-β2(2×4) surface and the passivation of oxidized GaAs(001)-β2(2×4) surface were studied by density functional theory. The results indicate that oxygen atoms adsorbed at back-bond sites satisfy the bond saturation conditions and do not induce surface gap states. However, due to the oxygen replacement of an As dimer atom at a trough site or row site, the As–As bond is broken, and gap states are produced leading to the Fermi level pinning because of unsaturated As dangling bonds. Atomic H, Cl, S, F, and the molecular species GaO were examined to passivate the unsaturated As dangling bond. The results show that H, Cl, F, and GaO can remove such gap states. It is also found that the interaction of S with the unsaturated As dangling bond does not remove the gap states, and new gap states are generated upon single S adsorption. A higher S coverage forms S–S dimer pairs which passivate two unsaturated As atoms, and removes the As-induced gap states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.