Abstract

The influences mechanisms of Y, Hf elements on the high temperature oxidation of γ-TiAl alloys were studied by using a first-principle plane wave pseudopotential method within the density functional theory. It is shown that Y, Hf atoms segregate to the γ-TiAl surface by substituting Ti atoms, and Y atom is easier to segregate than Hf. Y, Hf atoms segregated at γ-TiAl surface decrease the adhesion of O and γ-TiAl surface, which decreases the oxidation rate of γ-TiAl alloys and thereby hinders the growth of oxide films. The electron structure calculations suggest that the interaction between O and Ti, Al, Y, Hf atom exists both ionic and covalent binding characteristics, the decrease of the adhesion of O and γ-TiAl surface with the doped Y, Hf is mainly attributed to the weaken covalent interactions. As a result, the results obtained by first principles can make us get a deeper understanding of the mechanism of the segregation of Y, Hf to the γ-TiAl surface and the influence mechanism of surface active elements Y, Hf on the initial oxidation of γ-TiAl alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.