Abstract

We show by first-principles simulations that ultrafast laser pulses induce different chemical reactions in a molecule trapped inside a nanotube. A strong laser pulse polarized perpendicular to the tube axis induces a giant bond stretch of an encapsulated HCl molecule in semiconducting carbon nanotube or in a BN nanotube. Depending on the initial orientation of the HCl molecule, the subsequent laser-induced dynamics is different: either complete disintegration or rebonding of the HCl molecule. Radial motion of the nanotube is always observed and a vacancy appears on the tube wall when the HCl is perpendicular to the tube axis. Those results are important to analyze confined nanochemistry and to manipulate molecules and nanostructures encapsulated in organic and inorganic nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.