Abstract

Thermal transport properties have attracted extensive research attentions over the past decades. First-principles-based approaches have proved to be very useful for predicting the thermal transport properties of materials and revealing the phonon and electron scattering or propagation mechanisms in materials and devices. In this review, we provide a concise but inclusive discussion on state-of-the-art first-principles thermal modeling methods and notable achievements by these methods over the last decade. A wide range of materials are covered in this review, including two-dimensional materials, superhard materials, metamaterials, and polymers. We also cover the very recent important findings on heat transfer mechanisms informed from first principles, including phonon–electron scattering, higher-order phonon–phonon scattering, and the effect of external electric field on thermal transport. Finally, we discuss the challenges and limitations of state-of-the-art approaches and provide an outlook toward future developments in this area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.