Abstract

AbstractThe mechanism behind the hydrodeoxygenation (HDO) of guaiacol on Co(0001), Ni(111), Cu(111), Pd(111), and Pt(111) was investigated by constructing a first‐principles microkinetic model from density functional theory (DFT) models for 68 possible intermediates over each surface. We report that the most energetically favorable pathway for this process is the demethylation of guaiacol to catechol over Ni(111), which exhibits highly desirable deoxygenation and hydrogenation kinetics at industrial temperatures. Guaiacol readily undergoes hydrogenation over Pt(111) and Pd(111), but the products exhibit slow desorption from the surfaces at standard operation temperatures. Furthermore, the deoxygenation pathway is hindered by the high energy barrier associated with the scission of the Calkyl−O bond.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call