Abstract

Based on ab initio density functional theory calculations, we demonstrate that two carbon-doped boron nitride analog of α-graphyne structures, B3C2N3 and BC6N monolayers, are two-dimensional direct wide band gap semiconductors, and there are two inequivalent valleys in the vicinities of the vertices of their hexagonal Brillouin zones. Besides, B3C2N3 and BC6N monolayers exhibit relatively high carrier mobilities, and their direct band gap feature is robust against the biaxial strain. More importantly, the energetically most favorable B3C2N3 and BC6N bilayers also have direct wide band gaps, and valley polarization could be achieved by optical helicity. Finally, we show that BC6N monolayer might have high efficiency in photo-splitting reactions of water, and a vertical van der Waals heterostructure with a type-II energy band alignment could be designed using B3C2N3 and BC6N monolayers. All the above-mentioned characteristics make B3C2N3 and BC6N monolayers, bilayers, and their heterostructures recommendable candidates for applications in valleytronic devices, metal-free photocatalysts, and photovoltaic cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call