Abstract

AbstractSome of the renewed interest in transition metal diborides (MB2, M = Ti/Zr/Hf) arises from their potential use as matrices in ultrahigh‐temperature ceramic matrix composites (UHTCMCs). Crucial to the understanding of such composites is the study of the fiber/matrix interfaces, which in turn requires a deep knowledge of the surface structures and the thermodynamics of the matrix material. Here we investigate the surface stability of MB2 compounds by first‐principles calculations. Five surfaces are stabilized when going from a M‐rich to a B‐rich environment, respectively (0001)M, (100)M, (101)B(M), (113)M and (0001)B, with the highly stable (100)M, (101)B(M) and (113)M surfaces being discussed here for the first time. The mechanism behind the surface stability is analyzed in terms of cleavage energy, surface strain and surface bonding states. Our results provide important information for a better understanding of the most likely surfaces exposed to the fibers in UHTCMCs, thereby for the construction of reliable interfaces and ultimately UHTCMCs models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call