Abstract

The properties of dense hot hydrogen, in particular the phase transition between the molecular insulating and atomic conductive states, are important in the fields of astrophysics and high-pressure physics. Previous ab initio calculations suggested the metallization in liquid hydrogen, accompanied by dissociation, is a first-order phase transition and ends at a critical point in temperature range between 1500 and 2000 K and pressure close to 100 GPa. Using density functional theoretical molecular dynamics simulations, we report a first-principles equation of state of hydrogen that covers dissociation transition conditions at densities ranging from 0.20 to 1.00 g/cc and temperatures of 600–9000 K. Our results clearly indicate that a drop in pressure and a sharp structural change still occur as the system transforms from a diatomic to monoatomic phase at temperatures above 2000 K, and support the first-order phase transition in liquid hydrogen would end in the temperature about 4500 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.