Abstract

AbstractIn view of the importance of the hydroxyapatite/collagen composite of both natural bone tissue and synthetic biomaterials for hard tissue replacement, we have employed a combination of electronic structure calculations based on the Density Functional Theory and molecular dynamics simulations to investigate the adsorption of three major collagen I amino acids, as well as a complete peptide strand, at two hydroxyapatite surfaces, bothin vacuoand in a liquid water environment. The free amino acids as well as the peptide form multiple interactions with the surfaces and bind more strongly to the (01.0) surface than the (0001) surface, in agreement with experiment, which has found that in natural bone the (01.0) surface grows preferentially from a collagen matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.