Abstract

In this study, we calculate the temperature-dependent electronic structures and transport properties of the Heusler alloy Co2MnSi on the basis of the Korringa–Kohn–Rostoker Green's function method combined with the coherent potential approximation (CPA). Temperature effects often have a significant influence on the spin-polarization properties of Heusler alloys. To incorporate the contributions of temperature effects, we first consider lattice vibrations and spin fluctuations. Using CPA, we can replace them with random displacements due to local phonons and local magnetic moment disorders, respectively. In the Co2MnSi Heusler alloy, we found that the band structures are smeared by the electron–phonon scattering process and the half-metallic property is eliminated by magnon excitations from the spin-up to spin-down states. Furthermore, we can estimate the electrical resistivity as a function of temperature in the scheme of linear response theory. Including the local phonon disorder, local moment disorder, and Mn–Co antisite disorder in CPA, we can reproduce the temperature-dependent resistivity observed by experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.