Abstract

We report first-principles calculations on the adsorption of a metallic (6,6) single-walled carbon nanotube (SWCN) on the Si(001) surface. We find stable geometries for the nanotube between two consecutive dimer rows where C-Si chemical bonds are formed. The binding energy in the most stable geometry is found to be 0.2 eV/A. Concerning the electronic properties, the most stable structure shows an increase in the density of states near the Fermi level due to the formation of C-Si bonds enhancing the metallic character of the nanotube by the contact with the surface. These properties may lead one to consider metallic SWCNs adsorbed on Si substrates for interconnections and contacts on future nanoscale devices. Finally, the nature of the nanotube-surface interaction for nanotubes of larger diameters is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.