Abstract
We present an efficient first-principles method for simulating noncontact atomic force microscopy (nc-AFM) images using a "frozen density" embedding theory. Frozen density embedding theory enables one to efficiently compute the tip-sample interaction by considering a sample as a frozen external field. This method reduces the extensive computational load of first-principles AFM simulations by avoiding consideration of the entire tip-sample system and focusing on the tip alone. We demonstrate that our simulation with frozen density embedding theory accurately reproduces full density functional theory simulations of freestanding hydrocarbon molecules while the computational time is significantly reduced. Our method also captures the electronic effect of a Cu(111) substrate on the AFM image of pentacene and reproduces the experimental AFM image of Cu2N on a Cu(100) surface. This approach is applicable for theoretical imaging applications on large molecules, two-dimensional materials, and materials surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.