Abstract

Tritium trapping at point defects is a major issue concerning tritium extraction efficiency in solid state breeder materials in future fusion reactors. Here, tritium trapping behaviors at oxygen vacancies in Li4SiO4 have been investigated by density functional theory simulations. Formation energies have been calculated to determine the stability of defects in various charge states. Density of states, charge distribution and atomic charge has been calculated to investigate the mechanism of defect formation. The results showed that the neutral and 2 + charged oxygen vacancies are the most stable species and are both diamagnetic. The 1 + charged paramagnetic oxygen vacancy (E′ center) is less stable. In addition, the tritium-trapped O-vacancy is most stable when the defect complex is 1 + charged. The trapped tritium is bonded to Si forming a T-SiO3 unit. Other charge states of the complex may lead to unstable defect structures and high formation energies, forcing tritium to escape the vacancy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call